483 research outputs found

    From infall to rotation around young stellar objects: A transitional phase with a 2000 AU radius contracting disk?

    Get PDF
    Evidence for a transitional stage in the formation of a low-mass star is reported, intermediate between the fully embedded and the T Tauri phases. Millimeter aperture synthesis observations in the HCO+ J=1-0 and 3-2, HCN 1-0, 13CO 1-0, and C18O 1-0 transitions reveal distinctly different velocity fields around two embedded, low-mass young stellar objects. The 0.6 M(sun) of material around TMC 1 (IRAS 04381+2517) closely follows inside-out collapse in the presence of a small amount of rotation (~3 km/s/pc), while L1489 IRS (IRAS 04016+2610) is surrounded by a 2000 AU radius, flared disk containing 0.02 M(sun). This disk shows Keplerian rotation around a ~0.65 M(sun) star and infall at 1.3 (r/100 AU)^-0.5 km/s, or, equivalently, sub-Keplerian motions around a central object between 0.65 and 1.4 M(sun). Its density is characterized by a radial power law and an exponential vertical scale height. The different relative importance of infall and rotation around these two objects suggests that rotationally supported structures grow from collapsing envelopes over a few times 10^5 yr to sizes of a few thousand AU, and then decrease over a few times 10^4 yr to several hundred AU typical for T Tauri disks. In this scenario, L1489 IRS represents a transitional phase between embedded YSOs and T Tauri stars with disks. The expected duration of this phase of ~5% of the embedded stage is consistent with the current lack of other known objects like L1489 IRS. Alternative explanations cannot explain L1489 IRS's large disk, such as formation from a cloud core with an unusually large velocity gradient or a binary companion that prevents mass accretion onto small scales. It follows that the transfer and dissipation of angular momentum is key to understanding the formation of disks from infalling envelopes.Comment: Accepted ApJ. 33 pages, including 10 B/W figures and 1 color figure. Uses AASTe

    Resolving the chemistry in the disk of TW Hydrae I. Deuterated species

    Get PDF
    We present Submillimeter Array (SMA) observations of several deuterated species in the disk around the classical T Tauri star TW Hydrae at arcsecond scales, including detections of the DCN J=3-2 and DCO+ J=3-2 lines, and upper limits to the HDO 3(1,2)-2(2,1), ortho-H2D+ 1(1,0)-1(1,1) and para-D2H+ 1(1,0)-1(0,1) transitions. We also present observations of the HCN J=3-2, HCO+ J=3-2 and H13CO+ J=4-3 lines for comparison with their deuterated isotopologues. We constrain the radial and vertical distributions of various species in the disk by fitting the data using a model where the molecular emission from an irradiated accretion disk is sampled with a 2D Monte Carlo radiative transfer code. We find that the distribution of DCO+ differs markedly from that of HCO+. The D/H ratios inferred change by at least one order of magnitude (0.01 to 0.1) for radii 70 AU and there is a rapid falloff of the abundance of DCO+ at radii larger than 90 AU. Using a simple analytical chemical model, we constrain the degree of ionization, x(e-)=n(e-)/n(H2), to be ~10^-7 in the disk layer(s) where these molecules are present. Provided the distribution of DCN follows that of HCN, the ratio of DCN to HCN is determined to be 1.7\pm0.5 \times 10^-2; however, this ratio is very sensitive to the poorly constrained vertical distribution of HCN. The resolved radial distribution of DCO+ indicates that {\it in situ} deuterium fractionation remains active within the TW Hydrae disk and must be considered in the molecular evolution of circumstellar accretion disks.Comment: 12 pages, 12 figures, accepted to Ap

    A Resolved Molecular Gas Disk around the Nearby A Star 49 Ceti

    Full text link
    The A star 49 Ceti, at a distance of 61 pc, is unusual in retaining a substantial quantity of molecular gas while exhibiting dust properties similar to those of a debris disk. We present resolved observations of the disk around 49 Ceti from the Submillimeter Array in the J=2-1 rotational transition of CO with a resolution of 1.0x1.2 arcsec. The observed emission reveals an extended rotating structure viewed approximately edge-on and clear of detectable CO emission out to a distance of ~90 AU from the star. No 1.3 millimeter continuum emission is detected at a 3-sigma sensitivity of 2.1 mJy/beam. Models of disk structure and chemistry indicate that the inner disk is devoid of molecular gas, while the outer gas disk between 40 and 200 AU from the star is dominated by photochemistry from stellar and interstellar radiation. We determine parameters for a model that reproduces the basic features of the spatially resolved CO J=2-1 emission, the spectral energy distribution, and the unresolved CO J=3-2 spectrum. We investigate variations in disk chemistry and observable properties for a range of structural parameters. 49 Ceti appears to be a rare example of a system in a late stage of transition between a gas-rich protoplanetary disk and a tenuous, virtually gas-free debris disk.Comment: 11 pages, 6 figures, accepted for publication in Ap

    Molecular Lines as Diagnostics of High Redshift Objects

    Get PDF
    Models are presented for CO rotational line emission by high redshift starburst galaxies. The influence of the cosmic microwave background on the thermal balance and the level populations of atomic and molecular species is explicitly included. Predictions are made for the observability of starburst galaxies through line and continuum emission between z=5 and z=30. It is found that the Millimeter Array could detect a starburst galaxy with ~10^5 Orion regions, corresponding to a star formation rate of about 30 Mo yr^{-1}, equally well at z=5 or z=30 due to the increasing cosmic microwave background temperature with redshift. Line emission is a potentially more powerful probe than dust continuum emission of very high redshift objects.Comment: 15 pages LaTex, uses aasms4.sty, Accepted by ApJ

    Dense and warm molecular gas in the envelopes and outflows of southern low-mass protostars

    Full text link
    Observations of dense molecular gas lie at the basis of our understanding of the density and temperature structure of protostellar envelopes and molecular outflows. We aim to characterize the properties of the protostellar envelope, molecular outflow and surrounding cloud, through observations of high excitation molecular lines within a sample of 16 southern sources presumed to be embedded YSOs. Observations of submillimeter lines of CO, HCO+ and their isotopologues, both single spectra and small maps were taken with the FLASH and APEX-2a instruments mounted on APEX to trace the gas around the sources. The HARP-B instrument on the JCMT was used to map IRAS 15398-3359 in these lines. HCO+ mapping probes the presence of dense centrally condensed gas, a characteristic of protostellar envelopes. The rare isotopologues C18O and H13CO+ are also included to determine the optical depth, column density, and source velocity. The combination of multiple CO transitions, such as 3-2, 4-3 and 7-6, allows to constrain outflow properties, in particular the temperature. Archival submillimeter continuum data are used to determine envelope masses. Eleven of the sixteen sources have associated warm and/or dense quiescent as characteristic of protostellar envelopes, or an associated outflow. Using the strength and degree of concentration of the HCO+ 4-3 and CO 4-3 lines as a diagnostic, five sources classified as Class I based on their spectral energy distributions are found not to be embedded YSOs. The C18O 3-2 lines show that for none of the sources, foreground cloud layers are present. Strong molecular outflows are found around six sources, .. (continued in paper)Comment: Accepted by A&A, 13 figure

    Interferometric view of the circumstellar envelopes of northern FU Orionis-type stars

    Get PDF
    FU Orionis-type objects are young, low-mass stars with large outbursts in visible light that last for several years or decades. They are thought to represent an evolutionary phase during the life of every young star when accretion from the circumstellar disk is enhanced during recurring time periods. These outbursts are able to rapidly build up the star while affecting the circumstellar disk and thus the ongoing or future planet formation. In many models infall from a circumstellar envelope seems to be necessary to trigger the outbursts. We observed the J=1−-0 rotational transition of 13^{13}CO and C18^{18}O towards eight northern FU Orionis-type stars (V1057 Cyg, V1515 Cyg, V2492 Cyg, V2493 Cyg, V1735 Cyg, V733 Cep, RNO 1B and RNO 1C) and derive temperatures and envelope masses and discuss the morphology and kinematics of the circumstellar material. We detected extended CO emission associated with all our targets. Smaller scale CO clumps were found to be associated with five objects with radii of 2000−-5000 AU and masses of 0.02−-0.5 M⊙M_{\odot}; these are clearly heated by the central stars. Three of these envelopes are also strongly detected in the 2.7 mm continuum. No central CO clumps were detected around V733 Cep and V710 Cas but there are many other clumps in their environments. Traces of outflow activity were observed towards V1735 Cyg, V733 Cep and V710 Cas. The diversity of the observed envelopes enables us to set up an evolutionary sequence between the objects. We find their evolutionary state to range from early, embedded Class I stage to late, Class II-type objects with very low-mass circumstellar material. The results reinforce the idea of FU Orionis-type stars as representatives of a transitory stage between embedded Class I young stellar objects and classical T-Tauri stars.Comment: 17 pages, 11 figures; accepted for publication in A&

    A Keplerian Disk around the Herbig Ae star HD169142

    Full text link
    We present Submillimeter Array observations of the Herbig Ae star HD169142 in 1.3 millimeter continuum emission and 12CO J=2-1 line emission at 1.5 arcsecond resolution that reveal a circumstellar disk. The continuum emission is centered on the star position and resolved, and provides a mass estimate of about 0.02 solar masses for the disk. The CO images show patterns in position and velocity that are well matched by a disk in Keplerian rotation with low inclination to the line-of-sight. We use radiative transfer calculations based on a flared, passive disk model to constrain the disk parameters by comparison to the spectral line emission. The derived disk radius is 235 AU, and the inclination is 13 degrees. The model also necessitates modest depletion of the CO molecules, similar to that found in Keplerian disks around T Tauri stars.Comment: 10 pages, 2 figures, accepted by A

    ALMA CO J=6-5 observations of IRAS16293-2422: Shocks and entrainment

    Full text link
    Observations of higher-excited transitions of abundant molecules such as CO are important for determining where energy in the form of shocks is fed back into the parental envelope of forming stars. The nearby prototypical and protobinary low-mass hot core, IRAS16293-2422 (I16293) is ideal for such a study. The source was targeted with ALMA for science verification purposes in band 9, which includes CO J=6-5 (E_up/k_B ~ 116 K), at an unprecedented spatial resolution (~0.2", 25 AU). I16293 itself is composed of two sources, A and B, with a projected distance of 5". CO J=6-5 emission is detected throughout the region, particularly in small, arcsecond-sized hotspots, where the outflow interacts with the envelope. The observations only recover a fraction of the emission in the line wings when compared to data from single-dish telescopes, with a higher fraction of emission recovered at higher velocities. The very high angular resolution of these new data reveal that a bow shock from source A coincides, in the plane of the sky, with the position of source B. Source B, on the other hand, does not show current outflow activity. In this region, outflow entrainment takes place over large spatial scales, >~ 100 AU, and in small discrete knots. This unique dataset shows that the combination of a high-temperature tracer (e.g., CO J=6-5) and very high angular resolution observations is crucial for interpreting the structure of the warm inner environment of low-mass protostars.Comment: Accepted for publication in A&A Letter
    • 

    corecore